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Abstract
We discuss in this paper the magnetic and structural parameters of Fe/V and
Fe/Co multilayers. The electronic structure, magnetic moments (spin and
orbital) and Curie temperatures as well as the magneto-crystalline anisotropy
are calculated using first principles theory. Although theory is fairly successful
in reproducing the experimental data we argue that the observed difference
between theory and experiment most likely is due to lattice imperfections and
that the interface between e.g. Fe and V is not perfectly sharp. We also present
a model, based on the theory of elasticity, for analysing the structural properties
of multilayers.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The magnetic and structural properties of Fe/V multilayers have been under focus recently,both
theoretically and experimentally. This is largely motivated by the fact that these multilayers
are ideal model systems to study magnetism in reduced dimensionality, where one can monitor
a transition from three dimensional to quasi-two dimensional, by modifying the thickness of
the Fe and V layers. Hence there have been several experimental studies of these multilayers
measuring the magnetic moments [1–3], the structural properties [4], the in-plane [5] and
out-of-plane magneto-crystalline anisotropy [6] and the interlayer exchange coupling. As a
result of these studies it has been established that the Fe atoms carry a reduced magnetic
moment at the interface with the V atoms and that the V atoms also carry a magnetic moment
coupled antiparallel to the Fe moment. The size of the Fe interface moment is reported to be
1.2 µB and that of V is reported to be 0.5 µB . Theoretical calculations are rather successful in
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reproducing this behaviour; the anti-ferromagnetic coupling between Fe and V is reproduced,
the reduced Fe moment at the interface and the size of the V moment are at least with some
success reproduced by theory. Although theory has been rather successful in reproducing the
measured magnetic properties of these multilayers there are marked differences that will be
addressed in this paper, and we argue that this disagreement is due to structural imperfections
at the Fe/V interface.

It was recently observed that since the V atoms absorb hydrogen one has the possibility
to control the structural properties (lattice parameters) of the V layers, at least to some extent.
More importantly it has been found that the absorption of H in the V layers offers a way to
control the interlayer exchange coupling [7]. Hence the coupling between Fe layers, which
e.g. in Fe3V12 and Fe3V14 is antiferromagnetic, becomes ferromagnetic when small amounts
of hydrogen are allowed to enter the films. In addition it has been observed that when Fe/V
multilayers are exposed to hydrogen gas it is only the V layers that actually absorb H and that
H is not found for 1–2 V layers close to the interface with Fe.

Fe/Co has also been the subject of considerable interest, not least due to the potential in
using these alloys as materials in write-heads in magnetic recording devices [8]. Bulk alloys
have been investigated in some detail, and the magnetic moments are found to follow the Slater–
Pauling curve, with an initial increase in average moment with increasing Co concentration.
The maximum average magnetic moment is reached for a concentration of ∼25% Co and
the average spin moment for this alloy concentration is ∼2.3 µB/atom [9]. Together with
an orbital moment of ∼0.1 µB/atom for this concentration [9] a maximum total moment of
∼2.4 µB/atom is obtained for bulk bcc FeCo alloys. It should be noted that higher values of the
total moment of FeCo alloys have been quoted, e.g. reference [10] gives an average moment of
∼2.5 µB/atom. A few magnetization studies were also reported on films and multilayers, and
it was concluded that for films with low Co concentration the multilayers give average moments
lower than that of the bulk alloy, whereas for films with high Co concentration the opposite
situation is found [11]. Structural properties of Fe/Co multilayers were also reported [12, 13]
and in particular short range ordering of the Fe and Co atoms was discussed, something which
might also have implications for the magnetic properties.

First principles theory reproduces the behaviour of the bulk moments of FeCo alloys, in
particular the lower moments that have been quoted [9]. An early model calculation, based
on the virtual crystal approximation, reproduced both the spin and orbital moments of bcc
FeCo [14], whereas more accurate calculations based on the coherent potential approximation
(CPA) gave similar results for the spin moments [15–18] (the orbital moment was not
evaluated). In the case of thin FeCo alloy films on Cu, theory showed that the moments of both
Fe and Co were enhanced substantially. A magnetization profile was also reported for Fe/Co
multilayers [19], using first principles calculations, and among the more conspicuous findings
is the observed enhanced Fe moment at the Fe/Co interface, where the Fe atom was shown to
carry a moment as high as 2.6 µB/atom. The Co atoms were found to have similar moments
in the bulk of the film and at the interface, typically being of the order of 1.75 µB/atom.

We review here some of the pertinent experimental and theoretical results of the Fe/V and
Fe/Co multilayers and show, using first principles theoretical calculations, that the interface
between the Fe and V layers of the Fe/V multilayers must be less sharp than thought originally.
By means of a theoretical model that incorporates both interchange of Fe and V atoms across
the interface, resulting in an alloy phase at the interface, and terrace-like structures at the Fe/V
interface, we reproduce the magnetic moments and the critical temperatures as well as the
interlayer exchange coupling.
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2. Theory

The calculational method used in part of this work is the full-potential linearized muffin-
tin orbital (FP–LMTO) method [20]. This method makes no approximation to the shape of
the potential or charge density and is all electron and fully relativistic. For the calculations of
orbital moments and magnetic anisotropy energy (MAE), relativity is crucial. The calculations
of the MAE were made using the force theorem, which has been tested for these systems to be
accurate within 10% [21].

In the calculations of the interface roughness effects we used the Korringa, Kohn and
Rostocker (KKR) [22] method within the atomic-sphere approximation (ASA) together with
the local spin density approximation as parametrized in [23]. To carry out the partly alloyed
multilayer calculations, we used the CPA [24].

The magnetic properties and electronic structure of the Fe/Co multilayers have also been
calculated with a real space LMTO–ASA method [25]. This RS–LMTO–ASA scheme is
similar to the standard k-space LMTO–ASA scheme, but uses the recursion method [26] to
solve the eigenvalue problem, formulated within the LMTO–ASA formalism, to calculate
the local density of states (LDOS). The LDOS is obtained from a continued fraction of the
calculated recursion coefficients using a Beer–Pettifor terminator. In this work, we used
fully relativistic calculations, so that both spin and orbital moments were obtained. The cut-
off factor for the recursion used here was 24 and the perfect interfaces were calculated for
clusters of around 10 000 atoms. With this real space technique, local perturbations such as
impurities [27] can easily be treated without using large supercells. The method has been
compared with traditional k-space calculations [25] and with KKR–GF methods [27] and
shows good agreement. In this work the RS–LMTO–ASA method was used only in the study
of Fe/Co multilayers and in the calculations we used the experimental lattice constants of these
films [28].

3. Fe/V multilayers

3.1. Spin and orbital moments of ideal structures

In this section we discuss the spin and orbital moments of three multilayer systems, Fe2V6,
Fe3V5 and Fe4V4. The calculations of magnetic properties were made assuming the
experimental lattice parameters but with a perfect crystal structure, as illustrated in figure 1.
The numerical values of the calculated layer resolved spin and orbital magnetic moments
are tabulated in table 1. Our numerical values of Fe3V5 can be compared to the LCAO and
LMTO–ASA calculations of Moser et al [29] for the (001) (Fe3V3)∞ multilayers, who found
1.6 µB for Fe at the interface, 2.8 µB for the central Fe layer and −0.5 µB for the interface
V layer, close to our corresponding values, 1.77, 2.70 and −0.40 µB , calculated inside the
muffin-tin spheres. These results are similar to those obtained by the first-principles LMTO
calculation of Süss et al [30]. The contribution from the interstitial region remains small and
quite independent of the number of Fe layers. The presently calculated value of the total
magnetic moment of the Fe4V4 multilayers, namely 7.34 µB , is only in rough agreement with
the recent experiments of Farle et al [6], quoting a value of 5.5 µB . The discrepancies on
the individual site projected magnetic moments are even larger, partly due to the assumption
of the authors of [6] fixing the magnetic moment of the Fe(I − 1) atoms to the bulk Fe value
(2.2 µB ) and the value of the V(I) atoms at −0.35 µB . Using these assumptions, the magnetic
moment of the Fe(I) atoms at the interface has been experimentally estimated to be 1.55 µB .
Our calculated values are µFe(I−1) = 2.52 µB , µFe(I) = 1.74 µB and µV(I) = −0.45 µB .
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Figure 1. Geometry of the three supercells. The Fe atoms have light colouration and the V atoms
dark colouration.

Table 1. Calculated site-projected spin (µs) and orbital (µ�) moments (in µB), including the spin–
orbit coupling as well as the orbital polarization, inside the MT sphere for the different layers of
the Fe2V6, Fe3V5 and Fe4V4 multilayers.

Fe2V6 Fe3V5 Fe4V4

µs µ� µ�/µs µs µ� µ�/µs µs µ� µ�/µs

Fe(I-1) — — — 2.70 0.043 0.016 2.52 0.092 0.037
Fe(I) 1.87 0.058 0.031 1.77 0.060 0.034 1.74 0.069 0.040
V(I) −0.45 0.019 −0.042 −0.40 0.012 −0.030 −0.45 0.020 −0.044
V(I-1) −0.06 0.004 −0.066 −0.04 0.002 −0.050 −0.01 0.004 −0.400
V(I-2) −0.04 0.001 −0.025 0.08 0.003 0.038 — — —
Interstitial −0.26 −0.26 −0.28

The calculated results (table 1) for Fe2V6 may also be compared to experiment and previous
theory. Anisimov et al [31], using the LMTO–ASA method that neglects lattice relaxation,
brackets the magnetic moment of the Fe(I) atoms between 1.62 and 2.1 µB and that of the
V(I) atoms between −0.45 and −0.67 µB , provided that the lattice constant is chosen to be the
experimental lattice constant of Fe (lower limit), or of V (upper limit). The results presented
in table 1 are in good agreement with the data of [31]. However, as done for Fe4V4, assuming
that the magnetic moment of the interface V atoms are fixed to −0.67 µB , Farle et al [6]
deduced experimental values of 1.14 µB for µFe(I) for the Fe2V5 multilayer, which appears
strongly underestimated with respect to our present calculations (1.87 µB) and the theoretical
results of Anisimov et al [31]. The orbital moments, also listed in table 1, are rather small,
which is typical for transition metals, and cannot explain the disagreement between theoretical
and experimental moments. A comparison between experimental [6] and theoretical orbital
moments show that they agree somewhat better than the spin moments. The overall picture of
the spin and orbital moments presented in this section hence show that, where a comparison
can be made, there is a distinct disagreement between theory and experiment, something we
will return to below.
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3.2. Out-of-plane magnetic anisotropy

We turn next to the magneto-crystalline anisotropy of the Fe2V6 and Fe4V4 multilayers. The
direction of the easy axis of magnetization, as well as the magnetic hardness, i.e., how difficult
it is to change the magnetization direction, are of fundamental importance for the functionality
of these materials. Both these characteristics can be described through the magnetic anisotropy
energy (MAE), which has the following definition: the total energy of a magnetic material
depends on the direction of magnetization. The energy difference for different directions of
magnetization with respect to a reference direction (in this work the (001) direction) is the
MAE. Note that here we are only concerned with the contribution that is due to relativistic
effects as manifested through the spin–orbit coupling. The total easy axis of magnetization for
a macroscopic body with finite extent (i.e., it has shape) depends also on the shape anisotropy.
The latter can be large for, e.g., thin films, but in the experimental data that we compare to, the
shape contribution has been subtracted.

The calculated MAE of Fe4V4 (−11.5 µeV/atom) is of the same order of magnitude as the
experimental value (−5 µeV/atom) [6]. The theoretical value deviates by a factor of two from
experiment. As regards the Fe2V6 multilayers, the MAE is found to be 2.2 µeV/atom. The
calculated value is in excellent agreement with the experimental value of the corresponding
multilayer, namely 2.0 µeV/atom, obtained by Anisimov et al [31] with angular-dependent
ferromagnetic resonance (FMR) measurements. For both these multilayers the calculated easy
axis, i.e. [001] and [100] for Fe2V6 and Fe4V4 respectively, agrees with the experiments.

3.3. Critical temperatures

For the calculation of critical temperatures we used a combination of first principles calculations
and Monte Carlo simulations which will be described below. First, we used a TB–LMTO–ASA
method to calculate a number of non-collinear magnetic configurations in Fe/V multilayers.
The implementation of non-collinearity follows the scheme presented by Uhl et al [32] and
by Kubler [33]. We employed the local density approximation and we have also included
the so called combined correction terms to the Hamiltonian as described by Skriver [34]. The
magnetic configurations considered in this study are incommensurate spin spiral structures and
they are defined by giving the Cartesian coordinates of the magnetization vector �mnν as [35]

�mnν = mν[cos(�q · �Rn + φν) sin θν, sin(�q · �Rn + φν) sin θν, cos θν]. (1)

Here mν is the magnetic moment at site �rν , n labels the atom at �Rn and (�q · �Rn + φν) and sin θν

are polar angles (Euler angles). By varying the Euler angles for different atoms one can tune
the response of the spin spiral which will be important as we will see later. For instance, an
atom will not contribute to spin spiral energies if one chooses θν = 0 for that particular atom.

The spin spiral energies are mapped through a least squares fit to a classical Heisenberg
model including biquadratic exchange interactions. The Hamiltonian has the form

H = − 1
2

∑
i �= j

Ji j �ei · �e j − 1
2

∑
i �= j

Ki j(�ei · �e j )
2, (2)

where Ji j and Ki j are exchange parameters.
In order to obtain thermodynamic properties such as the critical temperature one needs to

solve a statistical mechanics problem. The most common way to solve this problem is to use
mean field theory (MFT) in which the expression for critical temperature reads (with bilinear
interactions only)

kB T M FT = 1
3

∑
j

J0 j . (3)
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Figure 2. Calculated spin wave energies for Fe3V7 along the 100 and 110 directions. The symbols
represent calculated values and the lines the fitted values (equation (2)). In (a) θ is set to 90◦ for
all layers and in (b) it is set to 90◦ for the central atoms and 0◦ for the interface atoms.

However, it is well known that MFT is valid only in higher dimensions. Since we are dealing
with low dimensionality systems, MFT clearly is not the appropriate choice to use. We have
instead used Monte Carlo simulations to solve the statistical mechanics problem. Monte Carlo
is a step beyond MFT since it includes fluctuations which are absent in MFT, that are important
especially for low dimensionality systems.

We use the standard single flip Metropolis algorithm as described in great detail in [36].
To determine critical temperature Tc we have used the ‘cumulant crossing method’. We then
calculate the reduced fourth order cumulant of the order parameter (magnetization) UL , defined
as

UL = 1 − 〈M4〉
3〈M2〉2

(4)

for different lattice sizes. The curves of UL will have a common intersection at a fixed point U∗,
which will be the critical point. Hence, we obtain a value of Tc from the intersection point of
UL for different lattice sizes. A full account of these calculations will be given elsewhere [37].

We have calculated Tc for Fe2V6 and Fe3V7 multilayers. Due to the similarity in technical
details of the two systems, we will give the details only for the calculation of Fe3V7. We have
in this study considered the case of perfect interfaces with no intermixing between the Fe and V
interface layers. We set up a multilayer geometry and calculated the energy E(�q) for a number
of spin spirals using the force theorem. The results are shown in figure 2. We choose spirals
in the [100] and [110] directions. We then fit the spiral energies to our model Hamiltonian
(equation (2)) to obtain exchange interactions. In order to obtain all exchange interactions we
first set the Euler angle θν = π/2 for all the Fe layers as shown in figure 2(a). All three Fe
layers will then contribute to the spin spiral energies. In the second set of calculations, we
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Figure 3. Monte Carlo simulation of the critical temperature of Fe3 V7. The top curve represents the
magnetization, the middle curve the susceptibility and the lower curve the fourth order cumulant.
Simulations for different sizes of the cell are given with the length of the simulation cell being
L = 48, 96, 128 and 192 lattice spacings.

set the Euler angle θν = π/2 only in the central layer and θν = 0 in the two interface layers
as shown in figure 2(b). Then the only contribution to the spin spiral energies will be from
the central layer. In this way one can extract information about exchange interactions in each
layer and also between the different Fe layers in Fe3V7

Once all exchange interactions are obtained within and between all atomic layers, we
perform a number of Monte Carlo simulations to extract Tc. We use a simulation box of
dimension L × L × D, where D is the thickness and L has been varied from 48 to 192. The
interlayer exchange coupling between the Fe layers was set to a typical value of 1 meV, but the
value of Tc is weakly dependent on this coupling. The total number of MCSs/spin was around
50 000, where the averages of the thermodynamic observable were measured in the last 15 000
steps. Results are shown in figure 3. The calculated critical temperature extracted from the
cumulant is 910 K, compared to the experimental value of around 400 K [1–3]. We repeated
the same kind of calculation for Fe2V6 and obtained a critical temperature of 850 K which
is much higher than the experimental value of around 200 K [1–3]. The theoretical method
used here reproduces the critical temperatures of transition metals in the bulk [37], and judging
from the poor agreement between experiment and theory for these multilayers we conclude
that it is likely that, just as concerns the magnetic moments, the interface between the Fe and
V layers is not perfectly atomically sharp.

3.4. The effect of interface roughness

From the findings presented above, where the experimental magnetic moments, MAE and
critical temperatures are reproduced to some extent by theory, but where differences are clearly
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Figure 4. Model of the interface between the Fe and V layers. The white area denotes the V layers,
the dark grey area the Fe layers and the light grey area the alloyed layers.

discernible, we come to the conclusion that the interface between the Fe and V layers is not
atomically sharp. A very good indicator of the interface quality in Fe/V multilayers is the total
magnetization of the sample divided by the number of Fe atoms. The reason for this is that
the magnetic moment of the Fe atom is very sensitive to the number of nearest neighbouring
V atoms [38]. Having made this observation, we construct a model of interface imperfections
that is an extension of the two models that were suggested by Kudrnovsky et al [39].

The first effect, thickness variation, is modelled by flat terraces of monolayer height at
the interfaces fluctuating randomly in both directions around an ideal interface. The ratio
between the area covered by one type of step and the total area is denoted γ and the two
types of imperfection, i.e. depletions and protrusions, are assumed to be present with the same
probability.

The other effect, interface interdiffusion, is calculated directly by letting the atomic layers
at each interface mix and form a random substitutional alloy. This means that each atomically
sharp Fe/V interface is in fact an interface of the type Fe/FecV(1−c)/Fe(1−c)Vc/V. When we
tried these two models for interface imperfections we found that employing either of them
separately did not reproduce the experimentally measured values of the magnetic moment.
We then investigated if a combination of the effects could account for the discrepancy between
the theoretical and experimental values. An illustration of the structural profile of the thickness
variation together with the interface interdiffusion is shown in figure 4. Each Fe slab in a Fe/V
superlattice has two interfaces and each has a probability of deviating from its ideal position
by the probability constant γ . At the same time we let each interface intermix in the two
atomic layers closest to the interface. In practice, we calculate the superlattices without the
steps but with interdiffused interfaces to get a total magnetic moment for each concentration:
Mc(FemVn) where {c} = (0; 0.1; 0.2; 0.3; 0.4; 0.5). Then, in order to include the effects
from the thickness variation, we calculate the probabilities of the possible thicknesses that are
allowed by the assumptions of the interfaces, i.e. N ± 2, N ± 1 and N . In total we then have
to perform one calculation for each concentration (6) and each thickness (5) i.e. 5 × 6 = 30
calculations for each superlattice FemVn. The total moment is then dependent on the parameters
γ and c and is here given in a matrix form,

Mγ
c (FemVn) =

2∑
i=−2

Mc(Fen−i Vm+i)P(N + i) (5)
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where the slab-thickness probability function P is defined as

P(N − 2) = γ 2

P(N − 1) = 2γ (1 − 2γ )

P(N) = 2γ 2 + (1 − 2γ )2

P(N + 1) = 2γ (1 − 2γ )

P(N + 2) = γ 2.

The matrix Mγ
c (FemVn) may then contain a line with the experimental moment that can be

drawn in the phase space {c, γ }. An interesting comparison can be made by calculating the
same matrix for another superlattice and investigating whether the new experimental line falls
in the same area of the phase space. In figure 5 we have plotted experimental lines for the
superlattices Fe2V6, Fe3V7 and Fe4V6 in the phase space {c, γ }. The experimental lines were
taken from the linear fit to the values given in [31], and we observe that the three experimental
lines cut through the same region in the {c, γ } phase space. This is a good test of the validity
of our model since the three multilayers are expected to grow with similar quality.

3.5. A growth model for Fe/V

The analysis presented above suggests that there is considerable intermixing between the Fe
and V atoms at the interface, but despite this fact it is interesting to analyse the measured
in-plane and out-of-plane lattice constants for these multilayers assuming a model based on
the classical theory of elasticity and ideal atomically sharp interfaces. In the limit of thick Fe
or V layers the effect of interface roughness becomes negligible and the model we propose
below should be viewed as applicable in this regime. Experimental values of the in-plane and
out-of-plane lattice constants have been measured for Fe (20 Å)/V (x Å) multilayers [5], where
Fe (20 Å) indicates that the Fe thickness was kept fixed at 20 Å whereas the V thickness (x Å)
was varied. In our elasticity model there are two main contributions to the total energy of each
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layer (Fe and V) of the multilayer. To accomplish the common in-plane lattice parameter, the
Fe and V layers are allowed to distort the structural properties (becoming tetragonal) as well
as to modify the volume, so that the in-plane lattice parameters coincide. The balance between
volume change and degree of tetragonal distortion is entirely given by the elastic constants of
Fe and V, in a way that will be described below. Let us first evaluate the energy contribution
from the tetragonal distortion, that is written as [40]

Es = E0 + 6c′δ2V , (6)

where c′ is related to the elastic constants c11 and c12 through c′ = 1/2(c11 − c12), and δ is
defined through the c/a ratio as

c

a
= a⊥

a‖
= 1

(1 + δ)3
. (7)

The energy associated with a change in volume can be expressed as

Ev = E0 +
∂ Ev

∂V
	V +

1

2

∂2 Ev

∂V 2
(	V )2 + · · · , (8)

where the first term is the energy corresponding to the equilibrium volume, the second term
is zero since the distortion is made from an equilibrium configuration and the third term is
related to the bulk modulus, B , as

B = V
∂2 Ev

∂V 2
. (9)

The change in volume is given by 	V = 1/2(a⊥a2
‖ − a3

0), where a‖ and a⊥ are the in- and
out-of-plane lattice parameters of the tetragonally strained film and a0 is the lattice parameter
of the unstrained cubic crystal. Note that the factor 1/2 comes from the fact that there are
two atoms/conventional unit cell in the bcc structure. B is the bulk modulus, which is defined
through B = (c11 + 2c12)/3. As an approximation, the values used for c′ and B are here
taken as the bulk ones, although for a multilayer consisting of thin layers they are expected to
deviate, and could be calculated. The two contributions are now added,

Etot = E0 + 6c′
[(

a‖
a⊥

) 1
3

− 1

]2

a3
0 +

B

2a3
0

(a⊥a2
‖ − a3

0)
2. (10)

For a superlattice consisting of NFe layers of Fe and NV layers of V, the appropriate total energy
is

Etot = NFe EFe + NV EV. (11)

The equilibrium configuration is then found from minimizing this energy with respect to the
lattice parameters, requiring that ∂ Etot/∂a‖ = 0, ∂ Etot/∂aFe

⊥ = 0 and ∂ Etot/∂aV
⊥ = 0.

The in-plane lattice parameter deduced from the XRD and the theoretical calculation is
shown in figure 6 and we observe that the agreement between theory and experiment is decent.
The theoretical model overestimates the lattice constants by a small amount and one may also
observe that the slopes of the theoretical and experimental curves are somewhat different. For
comparison we also show the lattice constants of a bcc FeV alloy, calculated from Vegard’s
law. One may note that the models based on elasticity and Vegard’s law have roughly the same
slope and give rather similar lattice constants, whereas the experimental curves have a slightly
different form. Unfortunately, no experimental data exist for the out-of-plane lattice constants
of Fe and V; only the average is obtained experimentally. In the XRD experiment the weighted
average of the out-of-plane lattice parameter is measured, i.e.
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Figure 6. In-plane lattice spacing for the Fe/V multilayer as a function of V thickness. The
experimental data are given as grey circles, the data from the elasticity model by black circles and
the lattice spacings using Vegard’s law for a bulk FeV alloy are given by the slanted line.

Figure 7. Out-of-plane lattice spacing for the Fe/V multilayer as a function of V thickness. The
experimental data are given as grey circles, the data from the elasticity model by black circles and
the lattice spacings using Vegard’s law for a bulk FeV alloy are given by the slanted line.

〈a⊥〉 = NFeaFe
⊥ + NVaV

⊥
NFe + NV

. (12)

In figure 7, both the measured and theoretical average out-of-plane lattice parameters are
plotted. In this figure the lattice constant of a bulk alloy, obtained from Vegard’s law, is
given. For the average out-of-plane lattice constant this approximation gives a less accurate
description of the structural properties, whereas the elastic model discussed above reproduces
experiment more accurately. One may of course expect larger deviations from Vegard’s law
in multilayers that are built up from materials with drastically different elastic constants.

One more important fact from figures 6 and 7 can be observed, namely that the experimental
curves do not approach the experimental Fe lattice constant in the limit of vanishing V thickness.
For the out-of-plane lattice constant experiments extrapolate to a somewhat smaller value and
for the in-plane constant experiments extrapolate to a larger value. The volume of the ‘Fe’
multilayer given in the limit of vanishing V thickness is a few per cent larger that the volume
of bulk bcc Fe. This suggests again lattice imperfections at the interface, so that in the limit
of vanishing V thickness one does not extrapolate to the lattice constant of pure bcc Fe but to
the lattice constant of an FeV alloy or a bcc Fe film with vacancies or interstitial impurities.
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Figure 8. MAE of Fe–V multilayers as a function of the Fermi energy. The self-consistent
calculation of the MAE (circles) is added for comparison, at three band fillings corresponding to
Fe2V6, Fe3V5 and Fe4V4. For values of the MAE larger than zero the 001 axis is the easy axis,
and for smaller values of the MAE the easy axis is in plane.

3.6. Chemical effects and magnetic anisotropy energy

We have argued that the interfaces between the two elements that constitute the multilayers
cannot be expected to be perfect, so that the proportions between the two elements also vary
slightly from one layer to another. One way to investigate the sensitivity of the MAE with
respect to the relative proportions of the elements constituting the multilayers consists in
studying the variation of the MAE of the Fe–V systems with respect to the d-band filling.
For this purpose, we proposed a band-filling model [21] aiming at expressing the MAE of the
Fe–V system as the Fermi energy of our compounds is varied, i.e. as the d band of Fe atoms
is increasingly filled. To obtain this dependence of the MAE with respect to the Fermi energy,
we have integrated the densities of states of the Fe4V4 multilayer, Dσ (ε) with σ = [001] and
[100] (corresponding to 52 valence electrons in the unit cell) in an energy range starting from
0.45 Ryd (from which the [001] and [100] DOSs start to be nondegenerate) to a Fermi energy
that we allow to vary by a small amount (using the rigid band approximation). We obtained
the following final expression for the MAE:

Ea(EF ) =
∫ EF

−∞
δN(ε) dε, (13)

where EF is the Fermi energy, and δN(ε) = N [100](ε) − N [001](ε) is the difference of
the integrated DOS, evaluated at the energy ε. For selected values of the Fermi energy,
corresponding to 49 and 46 electrons, we expect to reproduce the MAE of Fe3V5 and Fe2V6

which presents these exact band-fillings, respectively. This method allows us to study the
effects of band filling, by getting rid of any crystallographic interferences: the DOSs remain
the same as the Fermi energy is gradually varied and correspond to a frozen Fe4V4 cell (no
lattice parameter is changed). Figure 8 displays the so-obtained variation of the out-of-plane
MAE of the Fe–V systems with respect to the Fermi energy. The values of the MAE of Fe4V4,
Fe3V5 and Fe2V6, obtained by the exact DFT calculations (or using the exact eigenvalues of
the respective compounds) are superimposed at their respective Fermi energy.

The results show that, despite noticeable discrepancies attributed to differences between
the volume and axial ratio of Fe3V5 and Fe2V6 and the ones of Fe4V4, the sign and the
amplitude of the MAE of the three systems agree with the exact calculations, demonstrating
that the band-filling effects determine the value of the MAE in these systems to a large extent.
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Figure 9. Calculated average spin moments of Fe/Co multilayers using the FP–LMTO method
(open circles) and the RS–LMTO–ASA method (black circles). The calculated points are for bcc
Fe, Fe7Co1, Fe6Co2, Fe4Co4, Fe2Co6, Fe1Co7 and Co.

Our results also demonstrate that it should be possible to enhance the MAE of the Fe–V
multilayers, while anchoring the magnetization along the [001] spin-direction by tuning the
Fermi energy towards lower energies. The substitution of Fe atoms by Mn atoms, reducing
the valence of the unit cell, will generate a positive increase of the MAE (providing the
coupling between Fe and Mn stays ferromagnetic—see figure 8), re-enforcing the stability of
the magnetization along the [001] direction of polarization.

4. Fe/Co multilayers

4.1. Spin and orbital moments

Next we report on the calculated spin and orbital moments of the Fe/Co multilayers. The
theoretical work was done with two methods, the full-potential method, that was also used for
the calculations of the Fe/V multilayers, and an RS–LMTO–ASA method [25]. We compare in
figure 9 the average spin moments from the two methods,for (bcc) Fe/Co multilayers, assuming
an ideal interface between the Fe and Co atomic layers. It should be noted that the structure used
in the calculations was not ideal bcc, but bct with in-plane and out-of-plane lattice constants
taken from experimental data [28]. As can be seen the two methods give very similar values for
the spin moments. The real space method typically gives a moment 0.05 µB/atom larger than
the full potential result. One may also note that figure 9 shows a different trend in the average
spin moment, compared to bulk (bcc) FeCo alloys [16], where, as a function of increasing Co
concentration, there is initially a sharp upturn in the average moment so that the maximum
alloy moment of 2.3 µB is found for ∼25% Co. For the multilayers the situation is different,
the calculated average moment is increasing slowly for low Co concentrations, but changes
slope at ∼10% Co concentration, to become decreasing with increasing Co concentration.

The lower average moment of the multilayer, compared to bulk, is in agreement with
the experimental work of [11] and can be understood from the site projected moments (see
below and [15, 16]), that show that the moment of the Fe atom is enhanced (becoming as
large as 2.6 µB ) if the concentration of nearest neighbouring Co atoms is high. Since the
Co concentration in the first neighbour shell of the Fe atoms is higher for random bulk alloys
compared to that of ideal multilayers (since in this case the Fe and Co atoms are separated in
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Figure 10. Calculated layer resolved spin moments of Fe/Co multilayers using the the RS–LMTO–
ASA method. The calculated points are for bcc Fe, Fe7Co1, Fe6Co2, Fe4Co4, Fe2Co6, Fe1Co7
and Co.

different atomic layers) it is natural that the average moments of bulk random multilayers is
higher.

In figure 10 we display the individual spin moments of the interface and of ‘bulk’ Fe and
Co atoms and in figure 11 we show corresponding values for the orbital moments (obtained
from the real space method). The Co spin moments are similar for the interface and for the bulk
environment, reflecting the fact that the spin up band of Co is almost completely filled. For Fe
this is not the case and consequently any narrowing of bands due to the interface environment
will cause a change in the spin moment. As figure 10 shows, the interface moments are larger
than the bulk Fe moments, and our calculated values are in agreement with those of Nicklasson
et al [19]. The orbital moments follow a different trend; here it is the Fe moments that are
almost the same for the interface and ‘bulk’ atoms, whereas the Co moments are lowered for the
interface compared to the ‘bulk’ environment. Summing the spin and orbital moments from the
real space method gives a maximum magnetic moment for these films for a Co concentration
of ∼10% with a value of ∼2.35 µB/atom. The total moment (spin and orbital) from the full
potential method is ∼2.30 µB/atom for this Co concentration. These values are smaller than
the calculated values for bulk bcc FeCo alloys [40] that reproduce the maximum total moment
of 2.40 µB/atom at a Co concentration of ∼20%.

4.2. Magneto-crystalline anisotropy

In figure 12 we show our calculated in-plane MAE of the bcc Fe/Co multilayers. Note that
the calculations reproduce the [100] easy axis for bcc Fe and that there is a transition from
[100] to [110] easy axis at a concentration of ∼50% Co. For bulk bcc Fe/Co alloys the easy
axis changes from [100] to [110] at a concentration of 40–50% Co [41], i.e. rather close
to our calculated values for the multilayers. It is of course natural to expect that there are
differences between bulk and thin film data, but one must also consider the very small values
of the MAE for these systems, and that theory might make a small error in the exact values
of the concentration where the easy axis changes direction. Previously it has been argued
that one needs to include corrections to the effective potential in these types of calculation,
and the LDA (or GGA) potential has been replaced with the phenomenological LDA + U



Magnetism of Fe/V and Fe/Co multilayers S613

Figure 11. Calculated layer resolved orbital moments of Fe/Co multilayers using the the RS–
LMTO–ASA method. The calculated points are for bcc Fe, Fe7Co1, Fe6Co2, Fe4Co4, Fe2Co6,
Fe1Co7 and Co.

Figure 12. Calculated MAE of the Fe/Co multilayers using the the FP–LMTO method. The
calculated points are for bcc Fe, Fe6Co2, Fe4Co4, Fe2Co6 and Co.

approximation. For bcc Fe it was found that a value of ∼1 eV of the Coulomb U reproduced
the MAE [42]. However, it was subsequently argued that this value of U differs from the values
usually reported [43]. In addition, this value of U also differs from the values used in similar
approaches [44] applied to bcc Fe. In addition one may observe that for bcc Fe the observed
change in energy, when the magnetization vector (lying in the 110 plane) rotates with an angle
θ from the 001 axis, is reproduced within 20% in accurate first principles calculations, based
on the local density approximation [45]. These facts, taken together with the data in figure 12,
that are at least consistent with the MAE of bulk FeCo alloys, suggest that one does not need to
invoke approximations such as the LDA + U for calculations of the MAE of Fe and Co based
metallic systems.
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5. Conclusions

We discuss in this paper the magnetic and structural parameters of two multilayers, Fe/V and
Fe/Co. The electronic structure, magnetic moments (spin and orbital) and Curie temperatures
as well as the magneto-crystalline anisotropy are calculated using first principles theory. The
calculations were based on a full-potential method, a KKR–ASA method, a non-collinear
LMTO–ASA method and a real-space ASA method, and where a comparison can be made
the different theories give similar results. Although theory is rather successful in reproducing
the experimental data we argue that the observed difference between theory and experiment
for the Fe/V multilayers is due to lattice imperfections and that the interface between e.g. Fe
and V is not perfectly sharp. Both the magnetic moments as well as the critical temperatures
are too large compared to experiment if one assumes perfectly sharp interfaces. A model that
involves both the effect of interdiffusion of Fe and V and steps in the interface between the
films reproduces the experimental magnetic moments. We also present a model, based on
the theory of elasticity, for analysing the structural properties of the Fe/V multilayers. The
model reproduces the observed structural parameters of the Fe/V multilayers with rather good
accuracy. We have also given a detailed theoretical description of the spin and orbital moments,
as well as magneto-crystalline anisotropy of Fe/Co multilayers.
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